This policy has been designed to model the small steps needed when children are learning the four operations. The policy begins at the initial phase although most children will have secured this understanding in Key Stage 1.
The greater depth demonstrates where learning can be made awkward to challenge children to think differently.

TO + O using diennes. Children need an understanding of partitioning and place value. $41+8$	Represent the diennes as lines or a number on a place value grid.$41+8$10 s 1 s $\\|\\|\\|$ 1 	Using part part whole model or partition the numbers mentally $\begin{aligned} & 1+8=9 \\ & 40+9=49 \end{aligned}$	Fill in the missing numbers and explain what you notice. $\begin{array}{ll} 23+\square=30 & 33-\square=30 \\ 43+\square=50 & 53-3=\square \end{array}$
TO + TO using diennes. Children continue to develop understanding of partitioning 1s	Represent the diennes as lines of a number on a place value grid. $36+25$	Learning the strategy of number bonds to support adding and beginning to use a written method.$\begin{array}{rr} 36+25 & 30+20 \end{array}=50$ 3 6 + 2 5 6 1 4	Anna buys a teddy and a pencil. The teddy costs 20p more than the pencil. How much does she pay altogether.

Subtraction			
Key Language	Take away, less than, the difference, minus, fewer, decrease		
Concrete	Pictorial	Abstract	Greater Depth
Physically taking away and removing objects from a whole. (Use a wide range of resource to ensure children understand objects represent an amount) \downarrow 目淂	Draw the concrete resources they are using and cross out the correct amount.	Write the abstract number sentence.	Complete: Create your own diagram.
Counting back on a number line, starting with the biggest number. $6-2=4$	Represent what they see pictorially	Represent the calculation on a number line to show their jumps. This can include a blank number line.	Miss Froggy can only leap in $2 s$ on a numberline. She started on 20 and leapt back 6 Miss Froggy leaps. Show this on a number line. Finish off the number sentence to show Miss
	1 2 3 4 5 6 7 8		

Multiplication			
Key Language	Times, multipled by, product, groups of, lots of, equal groups.		
Concrete	Pictorial	Abstract	Greater Depth
Repeated addition $4+4+4$ There are 3 equal groups with 4 in each group.	Represent the practical resource with a picture.	$\begin{aligned} & 4+4+4=12 \\ & 4+4+4=3 \times 4 \\ & 3 \times 4=12 \end{aligned}$	Tara has 4 books. Ravi has 3 times as many books as Tara. How many books do Tara and Ravi have altogether.
Repeated addition Shown on a numberline.	Pictorially represented on a numberline. 3 lots of 4 is 12 .	Show on a blank numberline. $3 \times 4=12$	Amaan solved a multiplication calculation which had 3 equal jumps. He lands on 21. Show his workings.

Arrays Highlights the commutatively of multiplication. 2 lots of 5 5 lots of 2	Represent the arrays in both directions.	Record a range of calculations from the arrays. $\begin{aligned} & 2+2+2+2+2=10 \\ & 5+5=10 \\ & 2+2+2+2+2=5+5 \\ & 2 \times 5=10 \\ & 5 \times 2=10 \\ & 2 \times 5=5 \times 2 \end{aligned}$	Amy plants 4 rows of carrots. There are 3 carrots in each row. A rabbit eats 2 of the carrots. How many carrots are left?
Partitioning Use numicon to represent the number and rearrange 4×15	Represent the numicon as tens and ones pictorially.	Partition the larger number and multiply the parts. $\begin{gathered} 10 \times 4=40 \\ 5 \times 4=20 \\ 40+20=60 \end{gathered}$	Jack is making cards. One sheet of paper makes 15 cards. Jack uses 5 sheets of paper. How many cards does he make?

Division			
Key Language	Share, group, divide		
Concrete	Pictorial	Abstract	Greater Depth
Repeated subtraction	Represent the subtraction pictorially.	Use an abstract numberline to represent equal groups are being subtracted.	Miss Smith needs 30 apples for her class. There are 5 apples in each bag. How many bags of apples does Miss Smith need altogether?
Sharing using a range of objects $6 \div 2$	Represent the sharing pictorially.	Use times table facts to support. If I know $2 \times 3=6$ then I know $6 \div 2=3$.	How many ways could you share 20 sweets between friends so everyone gets an equal amount?
Sharing using place value counters. $42 \div 3$	Represent the counters pictorially.	Partition the number into two parts linked to the divisible number.	A group of friends earn $£ 80$ by washing cars. They share the money equally. They get $£ 16$ each. How many friends are in the group?
Using resources to represent remainders. Use of lollipop sticks to form wholes - 4 sides as we are dividing by 4 $13 \div 4$ There are 3 whole squares, with 1 left over.	Represent the sticks pictorially. There are 3 whole squares, with 1 left over.	Use times table facts to support. If I know $4 \times 3=12$ then I know 13 is made up of 3 groups of 4, with 1 left over.	Jack wants to buy a bike that cost $£ 107$. He saves $£ 10$ each Saturday. How many Saturdays will it take him to save enough to buy the bike?

Short division using place value counters $615 \div 5$ Make the value with counters. Ask how many 5 hundreds's go into 600 hundred, 50 s in 10 and 5 s in 5.	Use the short division written method						In this tower, two numbers are multiplied to give the number above.
			1	2			12
	5		6	${ }^{1} 1$			 4 3
							Write the missing numbers in the tower below to make it correct.
							$75 \quad 24$
Long division using place value counters $2544 \div 12$ We can't group 2 thousands into groups of 12 so we can exchange them.				2	1	2	Year 6 are calculating three thousand, six hundred and thirty three divided by twelve. Whitney says that she knows there will be a remainder without calculating. Is she correct? Explain your answer.
	1	2	2	5	4	4	
			2	4			
				1	4		
				1	2		
					2	4	
					2	4	
						0	

