PHJS Maths Curriculum Overview 2022-23

Please note:

- The White Rose document is their sequencing and coverage suggestion.
- The second grid is a working document that will act as a coverage document as well as a MediumTerm Plan.
- Adjustments have and will be made from the White Rose document to suit the needs of each year group, for example the Year 6 curriculum is more circular whereas lower down the school is more blocked to allow for more consolidation. This will also be adjusted based on other factors such as assessment weeks, Christmas and school residentials.
- Another factor affecting recent curriculum development has been Covid and the 'Ready to Progress' document criteria. This will be assessed as the year goes on and adapted along with the needs of the year group.
- Some of the coverage is slightly different across year groups based on Pound Hill Junior School expectations by the end of each phase, for example year 4 will spend more time covering times tables and telling the time and less on decimals, whereas year 5 will spend more time on fractions and less time on telling time. Also, 'Statistics' is covered in Science.
- As year groups plan their weekly lessons this year, they will consider the context and cross curricular links of their learning for a particular strand and add this to the working document
- This will be updated on the school website regularly
- Below the overviews are the Calculation Policy and Language Progression Document. This demonstrates the progression of challenge across the year groups for each strand of the Maths Curriculum.

Year 3 - White Rose Curriculum Suggestion

Year 3

Year 4 - White Rose Curriculum Suggestion

Autumn term

Number	Measurement
Decimals	Money
VIEW	VIEW

Week 1 Week 2 Week 3 Week 4

Week 8
Week 9
Week 10
Week 11
Week 12

Year 4

Unit of time:	130	45	6	7	$8 \quad 9$	10	11	12	13
	Place Value	Addition and	raction	Place value (1000 more 1000 less)	Money			Length, Perimeter \& Area	
$\begin{aligned} & \text { g } \\ & \text { n } \\ & 0 \end{aligned}$	Multiplication \& Division	Fractions				Decimals \& Percentage		Angles Assessment	
	Shape - 2D shapes and lines - Lines of symmetry - 2D coordinates - 3D shapes	Time				Capacity and volume		Consolidation/ Assessment	

Year 5 - White Rose Curriculum Suggestion

Year 5

Year 6 - White Rose Curriculum Suggestion

	Week 1 Week 2	Week 3 Week 4	Week 5	Week 6	Week 7	Week 8	Week 9	Week 10	Week 11	Week 12
$\begin{gathered} E \\ \hline \frac{5}{6} \\ \frac{5}{E} \\ \frac{1}{3} \end{gathered}$	Number	Number				Number				
	Place value	Addition, subtraction, multiplication \& division				Fractions				
	view				view			VIEW		viEw
	Number	Number	Number			Measurement		Number		흥흥흥흥0
	Decimals	Percentages	Alge			Perimeter, area \& volume		Ratio		
	view	view		view	view		view		view	
$\begin{aligned} & \text { E } \\ & \text { ¢ } \\ & \text { © } \\ & E \\ & \text { க } \end{aligned}$	Statistics	Geometry		Consolidation \& themed projects						
		Properties of shape								
			viEw							VIEW

Year 6

	1	2	3	4	5	6	7	8	9	10	11	12	13
$\begin{aligned} & \frac{c}{E} \\ & \frac{5}{3} \\ & \frac{3}{3} \end{aligned}$	Place - Round		Addition Multip - Men	$\frac{\mathrm{Su}}{\frac{\mathrm{atio}}{\text { str }}}$		on		$\frac{\mathbf{j}}{\mathbf{j}}$	$\begin{aligned} & \mathrm{J} \\ & \stackrel{0}{0} \\ & \mathbf{\Sigma} \end{aligned}$	Fractions \& Decimals			
$\begin{aligned} & \text { 도 } \\ & \text { n } \end{aligned}$			or		tions, Percen	imals			$$				
$\begin{aligned} & \text { ̀ } \\ & \stackrel{\text { c }}{\text { ćs }} \\ & \text { u } \end{aligned}$					SATS lume,	rages,	Milkshake Maths						

Calculation Policy

This policy has been designed to model the small steps needed when children are learning the four operations. The policy begins at the initial phase although most children will have secured this understanding in Key Stage 1. The greater depth demonstrates where learning can be made awkward to challenge children to think differently.

Addition			
Key Language	Sum, total, parts and wholes, plus, add, altogether, more,		
Concrete	Pictorial	Abstract	Greater Depth
Combining two parts to make a whole (Use a wide range of resource to ensure children understand objects represent an amount)	Represent the objects using dots or crosses. They can represent putting the parts together to make a whole in a part part whole diagram.	Write the abstract number sentence. $4+3=7$ Four is a part, 3 is a part and the whole is 7 .	James wants to partition his number in different ways. Complete the part-whole models to show two ways he could do this.
Regrouping to make 10; using ten frames and counters/cubes or numicon.	Draw the ten frames and counters.	Develop an understanding of equality e.g $\begin{aligned} & 6+\square=11 \\ & 6+5=5+\square \\ & 6+5=\square+4 \end{aligned}$	Sam, Jenny and Tom each make a number. \square -100 -00 Sam has 6 more than Jenny and 6
\square ロ			less than Tom. Match each number to the correct position.

TO + O using diennes. Children need an understanding of partitioning and place value. $41+8$	Represent the diennes as lines or a number on a place value grid.$41+8$10 s 1 s $\\|\\|\\|$ 1 ॥॥口"!	Using part part whole model or partition the numbers mentally $\begin{aligned} & 1+8=9 \\ & 40+9=49 \end{aligned}$	Fill in the missing numbers and explain what you notice. $\begin{array}{ll} 23+\square=30 & 33-\square=30 \\ 43+\square=50 & 53-3=\square \end{array}$
TO + TO using diennes. Children continue to develop understanding of partitioning	Represent the diennes as lines of a number on a place value grid. $36+25$	Learning the strategy of number bonds to support adding and beginning to use a written method.$\begin{array}{rl} 36+25 & 30+20 \end{array}=50$ 3 6 + 2 5 6 1 4	Anna buys a teddy and a pencil. The teddy costs 20p more than the pencil. How much does she pay altogether.

Subtraction				
Key Language	Take away, less than, the difference, minus, fewer, decrease	Greater Depth		
Concrete	Abstract	Complete:		
Physically taking away and removing objects from a whole. (Use a wide range of resource to ensure children understand objects represent an amount)	Draw the concrete resources they are using and cross out the correct amount.	sentence.		

Finding the difference using physical objects.	Draw the object they have used or a bar model to illustrate what needs calculating.	Find the difference between 8 and 5.
Calculate the difference between 8		
and 5.		

Children to explore why 9-6, 8-5, 7-4 have the same difference.

Using ten frames and physical objects. $14-5$ 41 - 4 -1	Present the tens frame pictorially. $14-5$	Show how to make 10 by partitioning the subtrahend (the part you are taking away) $14-4=10$ $10-1=9$	12 children are on a bus. 8 children get off the bus. Then 4 more children get off the bus. How many children were left on the bus?
Column method using diennes without exchanging 48-7	Represent the diennes pictorially $48-7$	Partition the numbers mentally to subtract. May introduce the column method without exchanging here.	Flo and Jim are answering a problem: Danny has read 62 pages of the class book, Jack has read 41. How many more pages has Danny read than Jack? Flo does the calculation $62+41$. Jim does the calculation $62-41$. Who is correct? Explain how you know.

Column method using diennes to solve TO - TO with exchanging $41-26$	Represent the resource, remembering to show the exchange. $41-26$	Formal column method. Children must understand what has happened when they have crossed out digits.	The strawberry weighs 24 grams.

Multiplication			
Key Language	Times, multipled by, product, groups of, lots of, equal groups.		
Concrete	Pictorial	Abstract	Greater Depth
Repeated addition $4+4+4$ There are 3 equal groups with 4 in each group.	Represent the practical resource with a picture.	$\begin{aligned} & 4+4+4=12 \\ & 4+4+4=3 \times 4 \\ & 3 \times 4=12 \end{aligned}$	Tara has 4 books. Ravi has 3 times as many books as Tara. How many books do Tara and Ravi have altogether.
Repeated addition Shown on a numberline.	Pictorially represented on a numberline. 3 lots of 4 is 12 .	Show on a blank numberline. $3 \times 4=12$	Amaan solved a multiplication calculation which had 3 equal jumps. He lands on 21. Show his workings.

Arrays	Represent the arrays in both directions.	Record a range of calculations from the arrays.	Amy plants 4 rows of carrots.
		$2+2+2+2+2=10$	There are 3 carrots in each row.
		$\begin{aligned} & 5+5=10 \\ & 2+2+2+2+2=5+5 \end{aligned}$	A rabbit eats 2 of the carrots.
	\bigcirc	$2 \times 5=10$	How many carrots are left?
Highlights the commutatively of multiplication.		$\begin{aligned} & 5 \times 2=10 \\ & 2 \times 5=5 \times 2 \end{aligned}$	
2 lots of $5 \quad 5$ lots of 2			

| Partitioning |
| :--- | :--- | :--- | :--- | :--- |
| Use numicon to represent the |
| number and rearrange | | Represent the numicon as |
| :--- |
| tens and ones pictorially. |
| Partition the larger number and |
| multiply the parts. | Jack is making cards.

Division			
Key Language	Share, group, divide		
Concrete	Pictorial	Abstract	Greater Depth
Repeated subtraction	Represent the subtraction pictorially.	Use an abstract numberline to represent equal groups are being subtracted.	Miss Smith needs 30 apples for her class. There are 5 apples in each bag. How many bags of apples does Miss Smith need altogether?
Sharing using a range of objects $6 \div 2$	Represent the sharing pictorially.	Use times table facts to support. If I know $2 \times 3=6$ then I know $6 \div 2=3$.	How many ways could you share 20 sweets between friends so everyone gets an equal amount?
Sharing using place value counters. $42 \div 3$	Represent the counters pictorially.	Partition the number into two parts linked to the divisible number.	A group of friends earn $£ 80$ by washing cars. They share the money equally. They get $£ 16$ each. How many friends are in the group?
Using resources to represent remainders. Use of Iollipop sticks to form wholes 4 sides as we are dividing by 4 $13 \div 4$ There are 3 whole squares, with 1 left over.	Represent the sticks pictorially. There are 3 whole squares, with 1 left over.	Use times table facts to support. If I know $4 \times 3=12$ then I know 13 is made up of 3 groups of 4, with 1 left over.	Jack wants to buy a bike that cost $£ 107$. He saves $£ 10$ each Saturday. How many Saturdays will it take him to save enough to buy the bike?

Pound Hill Junior School Language Progression					
	KS1 Assumption	Year 3	Year 4	Year 5	Year 6
Number \& Place Value	Two/three digit	Digit/Number Equivalent Round Compose/Decompose Partition	10 times the size of Next/previous multiple of 10/100	Multiple of 10 Tenth/hundredth Decimal places Next/previous multiple of 0.1	Powers of 10 Thousandth Decimal fraction
Number Facts	Number bonds Double/Halve Less/more than Odd/ Even Operation/ Calculation	Mental/Written Equal Number Sentence Sequence	Known facts Derived facts Further/Nearer \qquad \qquad er/ \qquad est Linear number sequence	Prime Number Square Number Cube Number	
Addition \& Subtraction	Add Total Takeaway		Difference		
Multiplication \& Division	Times Share Array	Product Groups Multiples	Remainders Scaling Factors/Multiples	Corresponding facts Common Factors/ Multiples	Relative size Proportion Ratio Formulae
Fractions	Fraction (Equal) parts Whole	Denominator Numerator Unit/non-unit fraction Split	Improper fractions Mixed numbers	Integer Decimal equivalent Percentage	Express
Geometry	Draw Points	Parallel/Perpendicular Angle Coordinates Reflection Translation 2D/3D shape Horizontal/ Vertical	Quadrant Regular Polygon Equal Perimeter Symmetry/Line of symmetry Acute/Obtuse	Orientation Area Rectilinear	Compose/Decompose Dimensions Radius Diameter Circumference

Statistics		Bar Charts Pictograms Table Record Quantity	Line Graph Discrete/Continuous Data	Mean Average	
Measurement		Length Mass Capacity	Scale Analogue/Digital Area/Perimeter	Metric/Imperial	
Language	Answer Correct	Inverse Adapt/Change Create Explain Solve Check/Reflect	Adapt Reason Estimate	Prove	

Types of language in Maths

1. The breadth of synonyms linked to one of the four calculation types (take instead of subtract, product instead of answer, altogether rather than add)
2. An understanding of superlatives (biggest, largest, tallest, smallest)
3. Words that can have different meanings outside of a mathematical context (round, product, factor, prime)
4. Terms other than superlatives that suggest comparison (between, more/less than, each, share, in order, sorting, put in the correct place)
5. Their understanding of the difference between the right answer and the wrong answer (best estimate, explain why Jack is not correct, write the correct symbol in each box, circle the improper fraction that is equivalent)
6. Verbs implying mathematical meaning (remaining, left, combine, collect, spend)
7. Compression of vocabulary through nominalisation and noun phrases - prime number, improper fraction, roman numeral, perpendicular and parallel lines, 3D shape
8. Abstract nouns - circumference, multiplication, area, perimeter
