

MATHS PARENT WORKSHOP
 Please sign in as you come in and complete the first part of the evaluation form

Parent Questions and Queries last summer

-What is being covered each week/term?
-How is Maths being taught?
-What can I do to help at home?
-How can I build my child's confidence?
-Which methods are taught?

USEFUL DOCUMENTS ON THE WEBSITE

- Curriculum coverage document - shows which area of the curriculum should be covered roughly in each week
- Language progression document- shows the key language the children should know in each year
-Calculation Policy- with examples of methods used
-'Mastery for parents' document
- FAQs- extra answers to questions asked in
 Summer's questionnaire that couldn't be covered today!

Maths at Pound Hill Junior School
Our aim for teaching mathematics at Pound Hill is to create a deeper understanding to ensure that all children have the fundamental skills and knowledge to succeed in their learning. We want children to easily develop new skills, enjoy using mathematics and face challenging learning with resilience. By building on a solid foundation of number and language fluency, children will be able to access a wide range of topics and apply their developing knowledge. This will support them, not only at our school, but in future life.

Enjoyment, Fluency, Application, Language, Resilience.

Calculation Policy
Please see the example of our calculation policy. This shows the stages that we use to build up our understanding through concrete apparatus,
pictorial representation and as abstract numbers. Each of these small steps are really important to avoid any misconceptions!

(Calculation Policy.pdf

Curriculum Overview
Below are the curriculum overviews for each year group for Maths. Please note

- The White Rose document is their
sequencing and coverage suggestion.
- The second grid is a working document that will act as a Coverage document as well as a Medium Term Plan.
- Adjustments have and will be made from the White Rose document to suit the needs of each year group, for example the Year 6 curriculum is more circular whereas lower down the school is more blocked to allow for more consolidation. This will also be adjusted based on other factors such as assessment weeks, Christmas and school residentials.
- Another factor affecting recent curriculum development has been Covid and the 'Ready to Progress' document criteria. This will be assessed as the year goes on and adapted along with the needs of the year group.

Vocabulary and Stem Sentence Bank \& Language Progression

Please see the example of our word bank to support parents and staff with the terminology used in maths. These words have stemmed from vocabulary used in the national curriculum. Alongside the definition is an example of using the word in a whole sentence that we call a stem sentence! We use these in our lessons to show our understanding and help consolidating our learning. Alongside this, there is a language progression document which shows the fundamental vocabulary children are expected to know and use for each topic across the Year Groups.

大 PHJS Vocab book.pdf
(Maths Language Progression.pdf
Parent Voice 2022-23
Please find answers to questions from the Parent Voice Questionnaire completed in Summer 2022 as well as the slides from the Maths workshop in Autumn 2022

囚 FAQs.pdf

A Parent guide to Mastery Maths.pdf

Curriculum overview

Calculation Policy

(Subject to change)

Language Progression

Number \& Place Value	${ }_{\text {KS1 Assumption }}^{\text {Twothree digit }}$				$\begin{gathered} \text { Year } 6 \\ \hline \text { Powers of } 10 \\ \text { Thousandth } \\ \text { Decimal fraction } \end{gathered}$
$\begin{gathered} \text { Number } \\ \text { Facts } \end{gathered}$		Mentala) Written Numbur sentence Sequence	Known facts Derived facts Further/Nearer Linear number sequence	Prime Number Squar Number Cube Number	
Addition \& Subtraction		$\begin{gathered} \text { sum } \\ \text { Sridge } \\ \text { Bricumn } \end{gathered}$	Difference		
Multiplication \& Division	$\begin{gathered} \text { ruceawes } \\ \text { Tinhes } \\ \text { Shrarey } \end{gathered}$	$\begin{gathered} \text { Coounn } \\ \substack{\text { Prounct } \\ \text { Gorups } \\ \text { Multipes }} \end{gathered}$	$\begin{gathered} \text { Remainders } \\ \text { Scaling } \\ \text { Factors/Multiples } \end{gathered}$	Corresponding facts Common Factors/Multiples	$\begin{aligned} & \text { Releative sise } \\ & \text { Properation } \\ & \text { Formulae } \end{aligned}$
Fractions	Fraction (Equal) parts Whole		Improper fractions Mixed numbers		Expres
Geometry	$\xrightarrow{\text { Draw }}$ Points			Orientation Area Rectilinear	Compose/Decompose Dimensions Radius Diameter Circumference Circumferenc

Vocabulary \& Stem sentence bank

These words have been organised underneath headings linked to the different strands of the maths curriculum and written in order so common associations are grouped together.

\begin{tabular}{|c|c|c|}
\hline Term \& Definition \& Stem Sentences \\
\hline \multicolumn{3}{|l|}{Number and Place Value} \\
\hline Digit \& A single numeral e.g 4 or 7 \& \begin{tabular}{l}
The value of the _ digit in ___ is \\
\(\overline{\text { TThe }}\) value of the 6 digit in 173,463 is 60 .
\end{tabular} \\
\hline Integer \& A whole number e.g 56, 107, 5000 \& \\
\hline Negative number \& A number less than 0 . \& \\
\hline Ones \& Digits representing 0-9 \& The __ in __represents the ones. 'The 5 in 475 represents the ones.' \\
\hline Whole \& The total amount. \& \begin{tabular}{l}
\(Z_{\text {__ }}\) is the whole, __ and __ are the parts. \\
' 20 is the whole, 16 and 4 are the parts.'
\end{tabular} \\
\hline Part \& An portion of a number that makes part of the whole. \& \begin{tabular}{l}
```
A part of__ is _
'A part of 10 is 6.'
- can be split into the parts
```
\(\qquad\)
\(\qquad\) \\
``` and '10 can be split into the parts 6 and
```

\end{tabular}

\hline
\end{tabular}

Vocabulary and Stem Sentence Bank

What is Singapore Maths?

Singapore Maths has received a lot of coverage in the media and many schools are adopting it as a way of teaching maths. It is an approach to teaching, rather than a new aspect of the national curriculum, which aims to develop mastery in maths for all pupils.

The maths mastery approach

The mastery approach to maths focuses on whole-class teaching and developing a deep understanding. All pupils are encouraged to believe that, through their own efforts, they can succeed.

Teaching for Mastery can be summarised with a few key principles:

- High expectations for every child
- Fewer topics covered in greater depth
- Number sense and place value are priorities
- Problem solving is central to all learning
- Challenge is provided through increased depth, rather than acceleration of content

How do children learn Maths?

Child/learner

Self belief, reflection, learning attitudes, Growth mindset

Scaffolding
Physical resources, representations, times table grids

Solid foundation - 'fluency' of mathematical language, number facts, times tables

Other People

Parents, peers, TAs, Teachers supporting

Broader and Deeper

 understanding, as opposed to 'stretching' further up without a solid foundation'Stretching' children, adding on more linear learning means they have an unstable understanding and more misconceptions can arise.

Add 6 digit numbers

Teaching for Mastery

Don't worry about these bits!

FLUENCY - FOCUS AT HOME

Recall

4 Operations

Times tables
Number Facts \& Arithmetic skills

Weekly homework

'Real Life' Maths

- Money (\& decimals)
- Telling the time, days of the week, calendars, train/bus timetables
-Measurements- cooking, art projects
-'Magnitude' of number- how many people attend a football match? Would you really use 300 kg of sugar or 300 g ?

APPLICATION - FOCUS AT SCHOOL

Reasoning \& Problem Solving
Context \& Cross curricular
Broadening and Deepening

Variation

Concrete Pictorial Abstract
Understanding other areas of the
curriculum

$600 \times 50=$? I have 5 bags with 6 footballs in each. How many do I have altogether?

HOW TO BUILD CONFIDENCE AND SUPPORT CHILDREN

Growth Mindset

'I can't do this.. yet'
'l'm stuck... for now'

Learning attitudes

Take a risk, you might get it right

Be resilient

Keep persisting - 'Don't practice until you get it right, practice until you can't get it wrong'

Can you think of an original way of tackling this? If you make a mistake, can you reflect on it? Let's collaborate \& work on this together

Provide a visual

Check the understanding of the Language

Use the Stem Sentence and Language Progression documents for this

Don't be afraid to make mistakes too!

AO: To develop our number sense.

† Growth mindset and

Learning attitudes give children belief to climb the ladder

Greater Depth

Explain errors involving complex column subtraction with clear and accurate mathematical language

Met

Identify and correct errors in column subtraction
Working Towards
Identify errors in column subtraction
children to Broaden \& Deepen their understanding, not stretch, for example with simply bigger numbers

EVERYONE expected to achieve Met

Working towards provides a smaller step for children to achieve
met

242
 -123

AO: To develop number sense.

2)

$\begin{array}{r}5688 \\ -103 \\ \hline 4658 \\ \hline\end{array}$

4)

Use this type of language when you are giving your mathematical explanations:

- Ones, tens, hundreds, thousands
- Column
- Switched the digits around
- Lined the calculation up incorrectly
- Forgotten to go next door to exchange and found the difference instead
- Subtracted the digits incorrectly
- Added the digits instead of subtracting

2)

4)

Answers

1. They have only found the difference in the tens column. You cannot take 3 away from 0 so they should have exchanged a hundred into 10 tens. (You could use the adding on method to calculate this mentally)
2. They did not line the columns up correctly. Recalculate: $5688-103=5585$ (You could even do this mentally as there are no exchanges or tens)
3. They added instead of subtracted- they didn't read the sign! Recalculate: $3213-1137=2,076$ (You probably would still need a written method as there were two exchanges)
4. They exchanged correctly in the ones column, but only found the difference in the hundreds column. You cannot take 7 away from 0 so they should have exchanged a thousand into 10 hundreds (You probably would still need a written method as there were two exchanges)
